
Usage notes for the FFT and
ComplexNumbers libraries

July 1994-January 1995
Copyright ©1994-1995 James Wilson

Table of Contents
Introduction...2

A note on ANSI conformance..2
ComplexNumbers..2

About ComplexNumbers...2
Using ComplexNumbers...2

Using the Complex class in your source code...................................3
Initialization..3
Assignment..3
Operators..3
Complex number functions..3

ComplexNumbers Reference..4
Data types...4
Complex number logic...4
ComplexNumbers summary..4

FFT..8
About FFT...8
Using FFT...8

Using the FFT library in your source code files................................8
Using the FFT function..8
Using the Inverse FFT (IFFT)..8

FFT reference...9
Data types...9
FFT..9
IFFT...9
FFT summary..9

References...11

Introduction

ComplexNumbers and FFT are two object libraries that implement complex
numbers and the Fast Fourier Transform, respectively. The ComplexNumbers library can be
used separate of the FFT library, but the reverse does not hold true.

Important Copyright notice: These libraries are Copyright ©1994-1995 James
Wilson. You are entitled to redistribute the software libraries enclosed as long as all the
items in the software package, including this document, are included and unmodified. You
may not re-distribute these libraries for profit. If you incorporate these libraries into
software that you write, please contact me by e-mail and do mention me somewhere in the
credits of your sofware. Commercial uses must have authorization (written or by e-mail) by
me. My e-mail address is <WILSON_J@4j.lane.edu>.

A note on ANSI conformance

The ComplexNumbers and FFT libraries were compiled in Symantec C++ 7.0.3 for
the Macintosh, with Strict ANSI conformance turned on. This means (hopefully) that the
code for the libraries should easily port to other development systems and other computer
systems. Source code is included with the libraries so they may be compiled and built into
libraries for other development systems.

If you are re-compiling the ComplexNumbers library to utilize SANE (Standard
Apple Numerics Environment), you may need to turn ANSI conformance off, because the
SANE header file is not ANSI-conformant.

ComplexNumbers

About ComplexNumbers

ComplexNumbers is a library that implements complex numbers and complex
number functions. The core component of ComplexNumbers is the class Complex. It uses
overloaded operators to achieve the same level of flexibility with C++'s primitive types,
such as int and double.

If you are familiar with ANSI C++, you probably know that ANSI C++ already
defines a complex number library, named complex (notice the case difference). After
considering this, the natural question is, why should one re-define a standard library?
There were actually three reasons this was done.

The first pertains to the machine: the Macintosh. Looking at the class declaration of
the ANSI complex, one will notice the operators >> and <<. These operators handle
standard input/output through a console. The Macintosh has much better ways to handle
standard I/O than through a console window.

The second reason has to do with the results returned by the complex library. I was
getting inconsistent results calling functions from the ANSI math libraries, using Apple's
SANE (Standard Apple Numerics Environment). I assumed this was a bug, and I have not
had the incorrect results using my library.

The third reason has to do with the way the ANSI complex library was declared. All
the overloaded operators that allow the complex class to be used like primitive types were
declared as friends. The use of friends in C++ is generally discouraged when better
alternatives are available (in this case, member functions). In addition, the use of the long
double type permeates the declaration of the ANSI complex class. On Macintosh on
PowerPC, the long double type is defined to be 128 bits long, and the operations are
performed in software. This would be too slow for most applications, including the FFT. The
floating-point type used in Complex is the double.

Using ComplexNumbers

Using the Complex class in your source code
To use the Complex class in your source code files, add the following three lines to

your code:

#ifndef __COMPLEXNUMBERS__
#include "ComplexNumbers.h"
#endif

Make sure that the ComplexNumbers.h file is included after your standard headers
and before any definitions begin.

Initialization
Complex is declared with three constructors. One takes no parameters and sets the

real and imaginary components both to zero. The second takes two parameters and
initializes the real and imaginary parts to the parameters. The last is a copy constructor.
The following is an example of the initialization:

void f(void)
{

Complex a;
Complex b(6.12376, -3.1415926);
Complex c(a);

// a == c == (0.0, 0.0); b == (6.12376, -3.1415926)
.
.
.

}

Assignment
The real and imaginary parts of a Complex object can be accessed through

Complex's public accessor functions. The Real() and Imag() return references to the real
and imaginary parts of a Complex object, respectively. Thus, they may be used on the right
or left side of the equal sign. The Re() and Im() return copies of the real and imaginary
parts of a Complex object, respectively. The following is an example of the usage of these
member functions:

void UseComplex(Complex& x)
{

double a;

x.Real() = -4.2;

a = x.Imag();

a = atan2(x.Im(), x.Re());
}

Operators
Complex provides overloaded operators for all arithmetic operations. In effect, the

Complex class can be used like other C++ primitive types, such as int and float.

Complex number functions
The ComplexNumbers library provides several functions that operate on the

Complex type.

The arg() and mod() functions return the same value, performing the absolute
value or modulus of a complex number z , defined to be a2 +b2 , where z =a+ ib.

The arg() function returns the phase of a complex number z , defined to be

tan−1 b
a
 ⎛
 ⎝

 ⎞
 ⎠ , where z =a+ ib.

The Conj() function returns the complex conjugate of a complex number z .

ComplexNumbers Reference

Data types
The Complex class is a concrete type that implements the concept of a complex

number. It provides a full set of overloaded operators.

Complex number logic
The Complex class provides the logical operators && and ||. For a Complex object to

be true, either or both of its components must be non-zero.

ComplexNumbers summary

//
// File: ComplexNumbers.h
// Copyright ©1994-1995 James Wilson
// All rights reserved.
//
// This file is a more Macintosh-compatible version of the complex
// class used in the iostreams library. Among the changes, the size
// of the real and imaginary components are now doubles instead of
// long doubles. This is for PowerPC compatibility. I have replaced
// all references to int with long. The << and >> I/O operators are
// not in this class; the Macintosh interface has other and better
// ways to handle standard I/O with the user. I have also done my
// best to eliminate the use of friends and other questionable C++
// constructs from this implementation. To match with with Macintosh
// class naming style conventions, the name of this class is Complex.
// Much of the implementation code is from the original complex
// source files, some modified to be more Macintosh and ANSI-C++
// compatible.

#if defined(__SC__)
#pragma once
#endif

#ifndef __COMPLEXNUMBERS__
#define __COMPLEXNUMBERS__

#if macintosh
#if defined(powerc)

#include <math.h>
#else

#if defined(__SC__)
#if __option(mc68881)

#include <math.h>
#else

#ifndef __SANE__
#include <SANE.h>

#endif
#endif

#else
#include <math.h>

#endif

#endif
#else

#include <math.h>

#endif

#if macintosh
#ifndef __TYPES__

enum {false, true};
#endif

#else
enum {false, true};

#endif

typedef double FP_TYPE;

class Complex {
public:

// Constructors
Complex();
Complex(const FP_TYPE re, const FP_TYPE im);
Complex(const Complex& copy); // Complex's copy constructor

// Indirect access functions
FP_TYPE& Real();
FP_TYPE& Imag();

// These functions return only values not references.
FP_TYPE Re() const;
FP_TYPE Im() const;

// Overloaded operators

// operator+
Complex operator+(const Complex&) const;
Complex operator+(const FP_TYPE) const;
friend Complex operator+(const FP_TYPE, const Complex&);

// operator-
Complex operator-(const Complex&) const;
Complex operator-(const FP_TYPE) const;
friend Complex operator-(const FP_TYPE, const Complex&);

// operator*
Complex operator*(const Complex&) const;
Complex operator*(const FP_TYPE) const;
friend Complex operator*(const FP_TYPE, const Complex&);

// operator/
Complex operator/(const Complex&) const;
Complex operator/(const FP_TYPE) const;
friend Complex operator/(const FP_TYPE, const Complex&);

// operator&&
long operator&&(const Complex&) const;
long operator&&(const FP_TYPE) const;
friend long operator&&(const FP_TYPE, const Complex&);

// operator||
long operator||(const Complex&) const;
long operator||(const FP_TYPE) const;
friend long operator||(const FP_TYPE, const Complex&);

// operator==
long operator==(const Complex&) const;
long operator==(const FP_TYPE) const;
friend long operator==(const FP_TYPE, const Complex&);

// operator !=
long operator!=(const Complex&) const;
long operator!=(const FP_TYPE) const;
friend long operator!=(const FP_TYPE, const Complex&);

// Unary operators
long operator!() const;

Complex operator-() const;

// Overloaded operators returning references

// operator=
Complex& operator=(const Complex&);
Complex& operator=(const FP_TYPE);

// operator+=
Complex& operator+=(const Complex&);
Complex& operator+=(const FP_TYPE);

// operator-=
Complex& operator-=(const Complex&);
Complex& operator-=(const FP_TYPE);

// operator*=
Complex& operator*=(const Complex&);
Complex& operator*=(const FP_TYPE);

// operator/=
Complex& operator/=(const Complex&);
Complex& operator/=(const FP_TYPE);

private:
FP_TYPE real;
FP_TYPE imag;

};

// Prototypes of complex number functions

FP_TYPE Abs(const Complex&);
FP_TYPE Mod(const Complex&);
FP_TYPE Arg(const Complex&);
Complex Conj(const Complex&);

// Inline member functions

inline Complex::Complex(void) : real(0.0), imag(0.0) { }
inline Complex::Complex(const FP_TYPE re, const FP_TYPE im) : real(re),
imag(im) { }
inline Complex::Complex(const Complex& z) : real(z.real), imag(z.imag) { }

inline FP_TYPE& Complex::Real(void) { return real; }
inline FP_TYPE& Complex::Imag(void) { return imag; }

inline FP_TYPE Complex::Re(void) const { return real; }
inline FP_TYPE Complex::Im(void) const { return imag; }

inline long Complex::operator!(void) const
{

return ((Re()==0) && (Im()==0)) ? true : false;
}

inline Complex Complex::operator-(void) const
{

return Complex(-Re(), -Im());
}

inline FP_TYPE Mod(const Complex& z)
{

return Abs(z);
}

#endif

FFT

About FFT
The FFT library, in conjunction with the ComplexNumbers library, provide an

implementation of the Fast Fourier Transform (FFT).
The Fourier transform is a transform function that, given an arbitrary function, can

break that function down into the sum of a (possibly infinite) number of sine and cosine
waves. The original function can be re-synthesized by using the inverse Fourier transform.

The following is a typical definition of the Discrete Fourier Transform (DFT):

X k()=DFT x n()[] = x n()e
−i2 π

N
nk

n=0

N−1

∑ .

The inverse is similar:

x n() =
1
N

X k()
k=0

N−1

∑ e
i2π
N

kn
.

With a little deduction, it can be shown that it takes n2 multiplications to compute
the Discrete Fourier Transform of an array with n data points. The Fast Fourier Transform
is an algorithm that compute the same values with much fewer multiplications.

Using FFT

The Fast Fourier Transform, as opposed to the discrete version, requires that the
number of data points be an integral power of 2 (e.g. 4, 8, 16, 32, 64, …).

Using the FFT library in your source code files
To use the FFT library functions, add these three lines to your source code files:

#ifndef __FFT__
#include "FFT.h"
#endif

Make sure that the FFT.h file is included after your standard headers and before any
definitions begin. FFT.h includes ComplexNumbers.h, so it is not necessary to include
ComplexNumbers.h in a source code file that already includes FFT.h.

Using the FFT function
To compute the Fast Fourier Transform of an array waveform, you could use this

code:

void DoFFT(Complex* data, long dataPoints, long log2DataPoints)
// data is an array.

{
FFT(dataPoints, log2DataPoints, data);
// data now holds the Fourier transforms of the input.

// show the results...
.
.
.

}

The last parameter to the FFT() function should be the data array that will be
transformed. If the data is real, all the imaginary fields of the array should be zero.

Using the Inverse FFT (IFFT)
The IFFT() function that performs an Inverse Fast Fourier transform and has the

same declaration of the FFT() function. Referring to the example above, we can add the
inverse transform:

void DoFFT(Complex* data, long dataPoints, long log2DataPoints)
// waveform is an array.

{
FFT(dataPoints, log2DataPoints, data);
// data now holds the Fourier transforms of the input.

// display the results...
.
.
.

// do the inverse transform and get the original function...
IFFT(dataPoints, log2DataPoints, data);

// display the results...
.
.
.

}

FFT reference

Data types
The only data type that the FFT library defines is ComplexArray. It is defined to be

an array of Complex objects. ANSI C++ defines T[] and T* to be equivalent types.

typedef Complex *ComplexArray;

FFT

void FFT(const long n, const long nu, ComplexArray spectrumOut);

FFT() performs the Fast Fourier Transform on the parameter spectrumOut. Input
data is destroyed. n is the number of data points in spectrumOut, and should be an integral
power of two. nu should satisfy this equation: n =2nu . In other words, nu is the log2 of n. If
the data in spectrumOut is real, all the imaginary components of the input should be zero.

IFFT

void IFFT(const long n, const long nu, ComplexArray functionOut);

IFFT() performs the Inverse Fast Fourier Transform on the parameter functionOut.
Input data is destroyed. The n and nu parameters are analogous to the n and nu parameters
in the FFT() function.

FFT summary

//
// File: FFT.h
// Copyright ©1994-1995 James Wilson
// All rights reserved.

//
// This is the header file for FFT.cp, an implementation of the Fast
// Fourier Fransform (FFT).

#ifndef __FFT__
#define __FFT__

#if macintosh
#if defined(powerc)

#include <math.h>
#else

#if defined(__SC__)
#if __option(mc68881)

#include <math.h>
#else

#ifndef __SANE__
#include <SANE.h>

#endif
#endif

#else
#include <math.h>

#endif
#endif

#else
#include <math.h>

#endif

#ifndef __COMPLEXNUMBERS__
#include "ComplexNumbers.h"
#endif

// 2*pi is equal to one revolution in radians (equivalent to 360 degrees).
const double twoPi = 6.28318530717959;

typedef Complex *ComplexArray;

/*
Function name: FFT

Returns: none

Parameters:
n: the number of data points in the spectrumOut array. n
should always be a power of 2.
nu: nu should satisfy this equation: n = 2^nu. ^ signifies
power not the binary XOR operator. In other words, nu is
log2 of n.
spectrumOut: on input, the real fields of the elements in
this array should hold the input values of the time-waveform
to be analyzed, with all the imaginary fields set to 0. On
output, this array holds the complex values of the Fourier
transform of the input. Input data is destroyed.

Notes: This function is an implementation of the Fast Fourier
transform, a function that takes any sampled function and breaks
in up into sine and cosine components. It is particularly useful
in digital signal processing and the analysis of sound waves.

*/
extern void FFT(const long n, const long nu, ComplexArray spectrumOut);

/*
Function name: IFFT

Returns: none

Parameters:

n and nu: these variables serve the same purpose as
they do in the function FFT (see above).
functionOut: On input, the elements of this array
should hold the complex Fourier transform values that are to
be transformed back into function values.

Notes: This function performs an Inverse Fourier transform;
it takes the transform values and creates a function out of it.
The IFFT is defined seperately from the FFT for pure computational
speed. Please be aware that the inverse values may not equal the
original values exactly. This is because anything that uses the
transcendental functions (sine, cosine, etc.) will never be exact,
however the inverse values should close enough not to notice a
significant difference.

*/
extern void IFFT(const long n, const long nu, ComplexArray functionOut);

/*
Function name: BitReverse

Returns: long
Possible return values: theNum, with its binary digits reversed.

Parameters:
theNum: the number that is to be reversed.
nu: the number of significant bits in theNum. This
paramter is similar to the nu paramter in the FFT function
(see above).

Notes: This function produces a number that is the binary
reverse of the input, theNum. For example, calling BitReverse with
theNum = 011001 and nu = 6 results with 100110. This function
is used internally by the functions FFT and IFFT.

*/
extern long BitReverse(const long theNum, const long nu);

/*
Function name: LongPower

Returns: long
Possible return values: base, raised to the power exp.

Parameters:
base: the base that is to be raised by exp.
exp: the exponent.

Notes: Power functions are not well defined in C/C++, so for
simplicity and compatibility, I define my own. Its operation
is staightforward, and probably not of that much interest to
applications.

*/
extern long LongPower(const long base, const long exp);

#endif

References

Strawn, John, editor. Digital Audio Signal Processing: An anthology. Los Altos, Calif. : W.

Kaufmann, 1985.

Walker, James S. Fast Fourier Transforms. Boca Raton : CRC Press, 1991.

Brigham, E. Oran. The fast Fourier transform and its applications. Englewood Cliffs, N.J. :
Prentice Hall, 1988.

Ludeman, Lonnie C. Fundamentals of digital signal processing. New York : Harper & Row,
1986.

